V7 3

TETRAHEDRON
LETTERS

Pergamon

Ethers
vlll" iy n Gl'"ﬂ QTIaNI ;"II'DI’II Tyvithikn ]Q 11 QI'\A YII" 1Q !mlI"lJ*
A UNILIL VU WD, AYadiaauvse Lvunuuuxl’ i \‘J “ilinng lDllll, CLLENG o WARL ) NROIMLLRIUEQ
Department of Chemistry, Gunma University, Tenjin-cho, Kiryu 376, Japan

....... 3

Key Words: ionophore, cyclophane, ion extraction, alkali metal, regioisomer.

Abstract: New ionophores having different size of crown ethers were prepared from a rigid calixarene
analog in 72-98% yields. They efficiently extracted the alkali metal ions. Their ion selectivity was

ize of crown ether © 1998 Elsevier Science 1td
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A bridging method between benzene nuclei of calix[4]arenes has been extensively studied to hold a desired
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conformation and to make a rigid skeleion. The unique structures of bridged calixarenes are focused on their
ion binding property as ionophores. = However, a conformational change of unbridged benzene ring of

calixarenes occurs by the introduction of functional groups at phenolic oxygen atoms because of original
bulkiness of substituents. 6 Accordingly, the evaluation of substituent effects for a unique cavity formed on
calixarenes is not clarified under the same conformational conditions.

Recently, we reported that new bridged calix[4]arene analogs were completely held in the cone
conformation and were variously functionalized without any conformational change.7'“ Accordingly, the rigid

calivarenee can he nced in order to examine the effect of substitients introduced at their nhenolic moieties
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clarify the nature of the formed cavity (hydrophilicity and lipophilicity) and the strength of interaction with metal
ions caused by substituents. We would like to report here their synthesis and ion binding properties.
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The synthetic method is shown in Equation 1 The crown ethers were prepared from calix[4]arene 1 (10
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- 2V mvly oy treatment with K,C0;5 (5 equiv.) and TsO(CH,CH,0),Ts (n=3 - 5, 1.5 - Z equiv,) m DME/THE

(9/1) at 80 - 120 Cfor 24 - 72 h. After an acidic extraction with CHCls, pure compounds 2 - 4 were obtained
in 72 - 98% yields by column chromatography (silica gel, ethyl acetate as an eluent). Unfortunately, the
synthesis of crown ether by the reaction of 1a and triethylene glycol ditosylate failed because the competitive
isomerization of methyl group occurred by intemal Sy, 2 reaction of the phenoxide ion.

The structures of crown ethers 2-4 obtained were mainly determined on the basis of the chemical shift
change by 'H NMR spectroscopy. 2" The aromatic protons of 1a-b split into four sets of doublets between
6.62 and 7.14. On the other hand, those of 3 and 4 havin
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and gather in a narrow region of 4 6.87 to 7. 10, although they split into four parts, These results show that the
electronic environment around aromatic nng protons becomes rather similar Dy the introduction of the additionai
ether groups. The inner protons Ha and outer ones Hb (see structure 1) of pentamethylene bridges of 2-4 shift
to the low field about 0.1-0.3 ppm compared with those of 1. The methoxy protons of 3a and 4a shift to up-
field about 0.11-0.25 ppm compared with those of 1a owing to further steric repulsion by introducing bulky
substituents. The methylene bridge protons of 1 appear as two doublets (AB type) at ca. 53.20 and 3.70 (J=13
Hz). On the other hand, those of 2-4 widely spread to & 2.98-2.99 and 4.26-4.31 (J= 13-14 Hz). This
behavior suggests that the rigidity around methylene bridges increased by the modification.

First, the ion binding properties of ionophores 2-4 were studied by the titration of alkali metal salts with H

comparison with the metal free spectrum (Flgure 1(a) and (b)). When the ratio of 3b:RbClO, was
i{c)), ali peaks became again of one component. ~Accordingiy, 3b formed 1:1 complex with Rb’ ion with a

slow exchange rate on the NMR time scale.
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Figure 1 500 MHz 'H NMR spectra of 3b (1 mM) and RbClO, at the ratio of (a)1:0,

(b)1:0.3, and (c)1:1 in acetone-dg at 25 °C.
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Total concentration=2.0 x 103 M
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in acetone (see Figure 2). When the mole
fraction of 3b was 0.5, the complex
concentration reached to maximum for Rb*
ion. And also, 2a and 4b whose mole
fraction was 0.5 formed the metal complex at
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Figure 2 Job plots of complexes between ionophores
and MCI10). in acatona_ 1.
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demonstrate that ionophores 2-4 form 1:1
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Based on these observations, we determined the extraciability of ionophores 2-4 wiih alkali metal ions
from aqueous phase to organic phase.”7-8 The experiments were carried out with 2.5 x 107 M of ionophores in
CH,Cl, and 2.5 x 10° M of picric acid in 0.01 M of aqueous metal hydroxide at 22 C. These results are
shown in Table I. Generally speaking, all ionophores show excellent extractability for alkali metal ions. Their
ion selectivity dramatically changes depending on the length of ether linkage; i.e., 2a having triethylene glycol
unit (n=3) apparently shows a sharp K* jon selectivity. lonophores 3a and b having tetraethylene glycol one
(n=4) strongly interact with Rb” ion. Finally, 4a and b having pentaethylene glycol one (n=5) show a sharp
Cs" ion selectivity. These results clearly indicate that the ring size formed by crown ether moiety was forced to
mework

The best extraction for alkali metal ions among all ionophores is exhibited by 3a and b having tetraethylene
giycol unit.  In both cases of tri- and pentaethyiene giycol units, their extractabiiity considerably decreased,
although their selectivity increased. The effect of alkyl groups was confirmed by the results of extraction, i.e.,
the extractability for ionophores having ethyl groups are more effective for all alkali metal ions than that with
methyl one. This is probably due to the higher lipophilicity of the larger alkyl group.

Tablel  Extraction (%) of alkali metal picrates in CH2Cl22

Compd Lit Nat K+ Rbt Cs* NHg+*
2a <i 41.8 777 2.3 <i 23
3a <1 12.9 84.5 97.2 93.4 68.2
3b <1 10.6 90.6 99.2 87.7 894
4a <1 3.7 18.6 434 90.8 5.1
4b <1 <1 40.5 66.0 94.2 16.8

a) Extraction conditions: 2.5 x 10*M of ionophore in CH,Cl,; 2.5x 10 M of picric acidin
0.01 M of MOH at22 “C.  Ionophore solution (5.0 ml) was shaken (10 min) with picrate
solution (5.0 mi) and % extraction was measured by the absorbance of picrate in CH,Cli,.

Experimental error was + 2%.
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In conclusion. iononhores 2-4 havino olionethvlena aolveal uni 3 v ™ inne
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the characterization of other regioisomers are now in progress and will be reported elsewhere
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(AH m\) 2 37 (4 m) 246 (BH m). 2.68(4dH m), 299 (2H. 4. 13). 3.53 (6H. 5). 3.72 - 4.04 (20 m)
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4.2/ (e, G, 13}, 4.4U (<1, M), 4.50 (4n, §-iKe), 6.6/ (41, Q, £.U), 6.74 (461, G, £4.Uj, /.Vzizn, Q, 2.U),
7.10(2H, d, 2.0). 4b; Calcd for C;,H,,00.5H,0: C, 76.72 (76.82); H, 8.32 (8.78); 898; 2946, 1456, 1220,
1134, 1040; 0.00 (2H, m), 0.78 (2H, m), 1.46 (6H, t, 7.0), 1.51 (4H, m), 1.78 (4H, m), 2.30 - 2.57 (12H,

m), 2.69 (4H, m), 2.99 (2H, d, 14), 3.52 - 4.17 (20H, m), 3.72 (4H, q, 7.0), 4.31 (2H, d, 14), 4.44 (2H, m),
4.55 (2H, m), 6.91 (2H, d, 2.0), 6.94 (2H, d, 2.0), 7.03 (2H, d, 2.0), 7.08 (2H, d, 2.0).



